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MPC Environments

MPC (classic environment):

Computing parties are:
• small in number.

• well-connected.

• known (to each other) in advance.

• guaranteed to be online.

• easy target for an adaptive adversary.

• not resilient to machine failures.

MPC (dynamic environment):

Computing parties are:
• part of a large-scale (P2P) network.

• not necessarily connected or known.

• joining and leaving the network at
any time.

3



MPC Environments

MPC (classic environment):

Computing parties are:
• small in number.

• well-connected.

• known (to each other) in advance.

• guaranteed to be online.

• easy target for an adaptive adversary.

• not resilient to machine failures.

MPC (dynamic environment):

Computing parties are:
• part of a large-scale (P2P) network.

• not necessarily connected or known.

• joining and leaving the network at
any time.

3



MPC Environments

MPC (classic environment):

Computing parties are:
• small in number.

• well-connected.

• known (to each other) in advance.

• guaranteed to be online.

• easy target for an adaptive adversary.

• not resilient to machine failures.

MPC (dynamic environment):

Computing parties are:
• part of a large-scale (P2P) network.

• not necessarily connected or known.

• joining and leaving the network at
any time.

3



MPC Environments

MPC (classic environment):

Computing parties are:
• small in number.

• well-connected.

• known (to each other) in advance.

• guaranteed to be online.

• easy target for an adaptive adversary.

• not resilient to machine failures.

MPC (dynamic environment):

Computing parties are:
• part of a large-scale (P2P) network.

• not necessarily connected or known.

• joining and leaving the network at
any time.

3



MPC Environments

MPC (classic environment):

Computing parties are:
• small in number.

• well-connected.

• known (to each other) in advance.

• guaranteed to be online.

• easy target for an adaptive adversary.

• not resilient to machine failures.

MPC (dynamic environment):

Computing parties are:
• part of a large-scale (P2P) network.

• not necessarily connected or known.

• joining and leaving the network at
any time.

3



Table of Contents

1. Large-Scale MPC on Blockchains

2. YOSO MPC [GHK+21]

Mobile Adversary

Role Assignment (RA) and Role Execution (RX)

3. Overview

4. Contributions

Encryption to the Future [CDK+22]

YOLO YOSO [CDGK22]

Layered MPC [DDG+23]

4



Large-Scale MPC on Blockchains



Permissionless Blockchains

Blockchains are large public P2P networks.
• Incentivized coordination platform for
miners/stakeholders.

• Secure if more than half of compute/stake is owned by
honest parties.

• Even sophisticated smart-contract platforms do not
provide privacy of input.

Built-in consensus layer:
• implements a PKI

• implements total-ordered broadcast

• implements a ”lottery” mechanism (e.g. VRF-based)

Can we use the blockchain infrastructure as a private
computing platform?

• Blockchain signatures (oracles, bridges, interop).

• Secret auctions and elections.

• Private smart contracts (selective
decryption/re-encryption).

YES! [BGG+20, GHK+21, CGG+21]
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Mobile Adversary
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Mobile Adversary [OY91]

• The mobile adversary can move to a new set of parties between epochs.

• Assume that parties can do secure erasures.

• Make sure that the ”state” is re-randomized between epochs.

• Decades of research in Proactive Secret Sharing and MPC.

• But existing work either settles for
• multi-round epochs, |epochs| > 1 [HJKY95, ADN06, BELO15, ELL20]
• corruption threshold n/c [OY91]
• generally incompatible with large networks (thousands/millions) of nodes.
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YOSO MPC [GHK+21]

Key Ideas:

1. Use the scale of the network to provide resilience towards a powerful
mobile adversary.

2. Randomly sample small committees Ci of size n� N that do the
computation ”on behalf of” of the larger network.

Committee members are
• anonymous until they speak.

• limited to ”Only Speak Once”.

• a moving target for the mobile adversary.

Attractive Side-effects
• Built-in support for node churn.

• Easy to sample committees with tolerated
corruption threshold (whp.)

• Communication depends on n instead of N.
How do we design protocols where parties ”speak only once”?
How do we send a message to an anonymous party?
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YOSO MPC [GHK+21]

Role Execution (RX)
• Divide the protocol into small
”units” called roles executed by a
single round on single machine
(player-replaceable).

• Each committee member (role)
executes the protocol step
according to the specification.

• Performs secure erasure.

• Send messages to future roles
using RA (Only Speak Once).

• Existing solutions include:
• YOSO IT (RB) [GHK+21]
• YOSO Comp. (CDN) [GHK+21]
• Fluid MPC [CGG+21]

Role Assignment (RA)

• (Randomly) associates a machine
in the network with a role in the
protocol.

• Establishes a
receiver-anonymous channel to
the machine.

• Existing solutions include:
• YOSO Compiler [GHK+21]
• Random-Index PIR [GHM+21]
• General WE [GGSW13]
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YOSO MPC [GHK+21]
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Overview

Layer 4 (Layered MPC):
Perfect General MPC over a
layered graph using only
ephemeral servers.

Layer 3 (YOLO-YOSO):
PVSS and resharing - basic
building block for MPC and other
applications.

Layer 2 (Encryption to the Future):
Communication towards unknown
lottery winners.

Layer 1:
Public PoS blockchain such as
Ouroboros Praos [DGKR18].

Applications layerLayer 5

Transport layerLayer 4

Network layerLayer 3

Data link layerLayer 2

Physical layerLayer 1

OSI Model
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Overview: Encryption to the Future [CDK+22]

Existing work on (RA):

• YOSO RA (toy example) [GHK+21]
A blueprint for implementing RA but too concrete to generalize the problem of transferring
secret state to future committees.

• Random-Index PIR [GHM+21]
Implementation of RA using the YOSO RA blueprint but relies on strong assumptions such as
Mixnets or FHE.

• General Witness Encryption [GGSW13]
Sufficient for implementing any RA mechanism but constructions rely on existence of
efficient multi-linear maps or iO

Motivation: Transferring secret state to future committees

• Consider secret state to the ”near” vs. ”far” future.

• Investigate the need for auxiliary committees for carrying state into the future.

• Consider the need for authenticated channels (Authentication-from-the-Past).

• Possibility of realizing RA using ”standard” assumptions.
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Overview: Encryption to the Future [CDK+22]

Encryption to the near Future.

1. Instantiate YOSO using EtF with an
anonymous lottery.

2. Introduce a relaxed version of WE
called ”WE over Commitments”
(cWE).

3. Construction using cWE based on
standard assumptions (OT + GC).

Encryption to the far Future.

1. No auxiliary committees ⇐⇒ BWE
(Blockchain Witness Encryption).

2. Construction using EtF (near) + TIBE.
With minimal use of auxiliary
committees (indep. of size/number
of messages)

3. something
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Overview: Encryption to the Future [CDK+22]

Type Scheme Communication Committee? Interaction?

EtF (near)
CaBKaS [BGG+20] O(1) yes yes
RPIR [GHK+21] O(1) yes yes

cWE(GC+OT) (Sec. 4.2) O(N) no no*

EtF (far)
IBE (Sec. 7) O(1) yes yes

WEB [GKM+20] O(M) yes yes
Full-fledged WE O(1) no no

• “Committee?” indicates whether a committee is required.

• “Communication” refers to the communication complexity in the number of all
parties N, or the number of plaintexts (called deposited secrets in [GKM+20]) M
of a given fixed length.

• Asterisk∗ means non-interactive solutions that require sending a first reusable
message
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Overview

Layer 4 (Layered MPC):
Perfect General MPC over a
layered graph using only
ephemeral servers.

Layer 3 (YOLO-YOSO):
PVSS and resharing - basic
building block for MPC and other
applications.

Layer 2 (Encryption to the Future):
Communication towards unknown
lottery winners.

Layer 1:
Public PoS blockchain such as
Ouroboros Praos [DGKR18].

General MPC w/ Ephemeral Parties [DDG+23]Layer 4

Public VSS w/ Ephemeral Parties [CDGK22]Layer 3

Communication [CDK+22]Layer 2

PoS Blockchain (PKI + BC + lottery)Layer 1
RA

RX

Ephemeral Committees Model
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Overview: YOLO YOSO [CDGK22]

Encryption to the near Future (Revisited).
Existing solutions have several downsides:

• Require an initial commitment phase when joining the network.

• Have ciphertext length which is O(N) or require interaction.

• Are not amendable to efficient techniques for proving correct resharing
(relies on generic ZK proofs).

Main Question
Can we design an EtF (near) scheme with O(1) ciphertext length and allows for
building practical PVSS (amenable to efficient techniques for proof of correct
sharing)?
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Overview: YOLO YOSO [CDGK22]

Contributions:

• EtF (near) scheme:

• That is concretely efficient using shuffling.
• Assuming anonymous broadcast, is both non-interactive and with
ciphertext length O(1).

• Propose PVSS schemes compatible with this EtF (EtF + PVSS):

• Generic PVSS from any Zp-Linearly Homomorphic Encryption (LHE) scheme.
• DDH-based PVSS where sharing proofs are public and
independent of number of parties—(2 Zp-elements).

• Efficient PVSS resharing protocols.
• Applications to efficient distributed randomness generation and
keeping secrets on a blockchain.
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Overview

Layer 4 (Layered MPC):
Perfect General MPC over a
layered graph using only
ephemeral servers.

Layer 3 (YOLO-YOSO):
PVSS and resharing - basic
building block for MPC and other
applications.

Layer 2 (Encryption to the Future):
Communication towards unknown
lottery winners.

Layer 1:
Public PoS blockchain such as
Ouroboros Praos [DGKR18].

General MPC w/ Ephemeral Parties [DDG+23]Layer 4

Public VSS w/ Ephemeral Parties [CDGK22]Layer 3

Communication [CDK+22]Layer 2

PoS Blockchain (PKI + BC + lottery)Layer 1
RA

RX

Ephemeral Committees Model
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Overview: Layered MPC [DDG+23]

• [BGW88]: general MPC with perfect, full security and optimal corruption
threshold (t < n/3).

• [OY91]: feasibility result of general MPC with mobile adversary
• Show feasibility of general IT MPC [BGW88, RB89].

• [HJKY95, BELO14, CH01]: Proactive Secret Sharing & MPC.

• [DJ97, WWW02, MZW+19, ELL20]: Dynamic Proactive SS & MPC.

• [GHM+17, BGG+20, GHK+21, CGG+21]: Secret sharing and MPC using
ephemeral committees (YOSO, Fluid).

f (xA, xB, xC, xD)

B
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A
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D
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Overview: Layered MPC [DDG+23]

Dynamic Proactive SS & MPC
[DJ97, WWW02, ELL20]

Proactive SS and MPC
w Ephemeral Committees
[BGG+20, GHK+21, CGG+21]

Perfect General MPC, t < n/3
[BGW88]

Perfect General MPC
w mobile adversary

[OY91]

Proactive SS & MPC
[HJKY95, CH01, CKLS02]
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Overview: Layered MPC [DDG+23]

Is it possible to construct MPC with ephemeral committees
achieving perfect full security against a maximally mobile
adversary* while maintaining optimal corruption threshold?
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Overview: Layered MPC [DDG+23]

Area Reference |epoch| Security Corruption Setup (BC+Chan.)

Proactive
MPC

[HJKY95] >1 Comp (full) t < n/2 Next Round
[OY91] =1 Stat (full) t < n/c† Next Round

Ephemeral
Committees

[GHK+21] (YOSO) =1 Stat (full) E[t] < n/2 Any Future Round
[CGG+21] (Fluid) =1 Stat (abort) t < n/2 Next Round

This work =1 Perfect (full) t < n/3 Next Round
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Overview: Layered MPC [DDG+23]

Main Contribution:

• Formalize the model of Layered MPC—standard MPC with special
interaction pattern and adversary structure.

• Present layered MPC protocols for general functionalities with perfect,
full security and optimal corruption threshold t < n/3.

• CNF (Replicated) Secret Sharing based protocols [GIKR01, Mau06].
• Shamir Secret Sharing based protocols (efficient) [BGW88].

• Improve on existing results on maximally proactive MPC protocols
[OY91] and on new work on MPC with ephemeral committees
[GHK+21, CGG+21].

• Present layered MPC protocols for general functionalities with
computational, full security and t < n/2.
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Contributions



Encryption to the Future [CDK+22]



Blockchain Lotteries

A self-selection mechanism that gives the winner the right
to play a role R:

• propose a new block for the chain

• introduce new randomness

• become a member of a committee
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Blockchain Lotteries

Lottery Predicate. lottery(B, slot,R, ski) ∈ {0, 1}

• Anonymous Lotteries
(e.g. VRF-based Cryptographic Sortition, Nakamoto PoW)

• Transparent Lotteries
(e.g. ”Round-Robin”, ”Follow-the-Satoshi”)

• No adaptive security!
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Encryption to the Future

Encryption to the Future (EtF) w.r.t. lottery(B, slot,R, sk).

Encryption. ct← Enc(B̂, slot, R,m)

Decryption. m/⊥ ← Dec(B̃, ct, sk)
Outputs m iff lottery(B̃, slot, R, sk) = 1

B̂ = B̃ (near future)
blockchain state is unchanged (known stake distribution)

B̂ 6= B̃ such that B̂dκ � B̃ (far future)
stake distribution is unknown at encryption time.
”Harder” to realize, similar to [GKM+20] and implies Blockchain WE.
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Encryption to the Future

Weaker Notion: Encryption to the Near Future
• Encryption w.r.t. lottery(B̃, slot, Rj, sk)

• The state of blockchain when the lottery winner is decided is known at
the time of encryption: B̂ = B̃

• Can be constructed from ”Witness Encryption over Commitments” (cWE)
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Witness Encryption [?]

A Witness Encryption scheme for NP language L (and witness relation RL).

Encrypt. ct← Enc(x,m),

Decrypt. m/⊥ ← Dec(ct,w)

Properties:

• Correctness: For any x ∈ L such that (x,w) ∈ RL

Pr [Dec(Enc(x,m),w) = m] = 1

• Security: For any PPT A, if x /∈ L then

Pr [A(Enc(x, 0)) = 1]− Pr [A(Enc(x, 1)) = 1] ≤ negl(λ)

30



Witness Encryption over Commitments (cWE)
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Witness Encryption over Commitments (cWE)

Setup Phase. Bob publishes a re-usable commitment
cmbob ← Commit(ck, s; ρ)

Encrypt Phase. Define a language of statements x = (com, C, y) and
witnesses w = (s, ρ).

Let (x,w) ∈ R iff
”com commits to s using randomness ρ such that C(s) = y”

Properties

• Correctness: For any x ∈ L such that (x,w) ∈ R
Pr [Dec(Enc(x,m),w) = m] = 1

• Strong Semantic Security:

1. Adversary receives ct← Enc(ck, (com, C, y),m) but does not know
satisfying witness

2. Adversary sees other cti ← Enc(ck, (comi, C, y),m) but without knowing
the opening to comi

3. ”The adversary has no advantage in guessing m if it cannot point to a
commitment of a satisfying s where it knows the opening.”
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Encryption to the (near) Future

Obtain EtF (near) from Witness Encryption over Commitments (cWE)

Setup. Let each party publish a commitment cmi ← Commit(ski; ρ) of the
their lottery key

Encrypt. Let the circuit C encode the predicate lottery(B, slot, R, ·).
Use the statement xi = (comi, C, 1) for encryption.

Decrypt. The lottery-winning party with ski successfully decrypts since
C(ski) = 1.

Result:

• The first non-interactive (using no auxiliary committees) Role Assignment
protocol.

• Encryption has to be done ”towards” every potential lottery winner—ciphertext
length O(N).

• For additional candidate constructions - read the paper.
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Encryption to the Future

Encryption to the Future (EtF) w.r.t. lottery(B, slot,R, sk).

Encryption. ct← Enc(B̂, slot, R,m)

Decryption. m/⊥ ← Dec(B̃, ct, sk)
Outputs m iff lottery(B̃, slot, R, sk) = 1

B̂ = B̃ (near future)
blockchain state is unchanged (known stake distribution)

B̂ 6= B̃ such that B̂dκ � B̃ (far future)
stake distribution is unknown at encryption time.
”Harder” to realize, similar to [GKM+20] and implies Blockchain WE.
Easy to realize using EtF (near future) + TIBE scheme and use of auxiliary committees 34



Identity Based Encryption (IBE)
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Encryption to the Future with Committee

• Encrypt. Party publishes ct← ΠTIBE.Enc(mpk, ID = (slot, R),m).

• Setup. (YOSO MPC) constructs the TIBE setup (mpk,msk = (msk1, . . . ,mskn)).
1. msk = (msk1, . . . ,mskn) is proactively reshared through the slots in
blockchain execution.

2. Check if any EtF ciphertexts have a receiving (slot, R) that has been
decided. If true, then:

• Sample share of the IBE key for (slot, R)
ski(slot,R) ← ΠTIBE.IDKeygen(mski, (slot, R))

• Send shares of ID-key by EtF (near) ctsk,i
(slot,R) ← ΠEtF.Enc(B, slot, R, ski(slot,R))
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Encryption to the Future with Committee

Setup. [ ... ]

Encrypt. Party publishes ct← ΠTIBE.Enc(mpk, ID = (slot, R),m).

Decrypt. The lottery-winner for (slot, R) decrypts EtF (near) ciphertexts and
combine shares {ski(slot,R)} to obtain sk(slot,R) . Finally outputs
m← ΠTIBE.Dec(sk(slot,R), ct).
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YOLO YOSO [CDGK22]



YOLO YOSO: EtF (near) using Shuffling

• We propose a simple EtF approach:
• Each party will be associated with an anonymous key pair (PKE).

• Concretely, each party inputs their PK pkE,i into a mixnet. The resulting list
of PKs is published on the blockchain with pkAnon,ψ(i) = pkE,i for random
permutation ψ.

• Lottery will select an unused key in the list.
• More elaborate strategy using Camenisch-Lysyanskaya signatures:
preserves anonymity (among committee members) even after speaking.

• This is good enough for EtF, but how about secret sharing to a
committee? How do we prove consistency between shares?

Algorithm 1 lottery(B, slot, R, skL,i)
1: ({(j, pkAnon,j)}j∈[n], η)← param(B, slot)
2: (pkE,i, skE,i)← skL,i
3: k←H(slot||R||η)
4: return 1 iff pkE,i = pkAnon,k
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Publicly Verifiable Secret Sharing (PVSS) [Sch99]

Setup ...

Distribution • Dist(pp, pkD, skD, {pki : i ∈ [n]}, S) performed by the dealer,
and where S ∈ G is a secret, outputs encrypted shares
Ci : i ∈ [n] and a proof PfSh of sharing correctness.

Verification • Verify(pp, pkD, {(pki, Ci) : i ∈ [n]}, PfSh) performed by the
public verifier outputs 0/1 (as a verdict on whether the sharing
is valid)

Reconstruction • DecShare(pp, pkD, pki, ski, Ci), performed by a share receiver,
outputs decrypted share Ai and proof PfDec i of correct
decryption.

• VerifyDec(pp, pkD, Ci, Ai, PfDec i) outputs 0/1 (as a verdict on
whether Ai is a valid decryption of Ci)

• Rec(pp, {Ai : i ∈ T }) for some T ⊆ [n] of size t + 1 outputs a
secret S.

Our constructions satisfy Correctness, Verifiability and Indistinguishability of Secrets.

40



Publicly Verifiable Secret Sharing (PVSS) [Sch99]

Setup ...

Distribution • Dist(pp, pkD, skD, {pki : i ∈ [n]}, S) performed by the dealer,
and where S ∈ G is a secret, outputs encrypted shares
Ci : i ∈ [n] and a proof PfSh of sharing correctness.

Verification • Verify(pp, pkD, {(pki, Ci) : i ∈ [n]}, PfSh) performed by the
public verifier outputs 0/1 (as a verdict on whether the sharing
is valid)

Reconstruction • DecShare(pp, pkD, pki, ski, Ci), performed by a share receiver,
outputs decrypted share Ai and proof PfDec i of correct
decryption.

• VerifyDec(pp, pkD, Ci, Ai, PfDec i) outputs 0/1 (as a verdict on
whether Ai is a valid decryption of Ci)

• Rec(pp, {Ai : i ∈ T }) for some T ⊆ [n] of size t + 1 outputs a
secret S.

Our constructions satisfy Correctness, Verifiability and Indistinguishability of Secrets.

40



Publicly Verifiable Secret Sharing (PVSS) [Sch99]

Setup ...

Distribution • Dist(pp, pkD, skD, {pki : i ∈ [n]}, S) performed by the dealer,
and where S ∈ G is a secret, outputs encrypted shares
Ci : i ∈ [n] and a proof PfSh of sharing correctness.

Verification • Verify(pp, pkD, {(pki, Ci) : i ∈ [n]}, PfSh) performed by the
public verifier outputs 0/1 (as a verdict on whether the sharing
is valid)

Reconstruction • DecShare(pp, pkD, pki, ski, Ci), performed by a share receiver,
outputs decrypted share Ai and proof PfDec i of correct
decryption.

• VerifyDec(pp, pkD, Ci, Ai, PfDec i) outputs 0/1 (as a verdict on
whether Ai is a valid decryption of Ci)

• Rec(pp, {Ai : i ∈ T }) for some T ⊆ [n] of size t + 1 outputs a
secret S.

Our constructions satisfy Correctness, Verifiability and Indistinguishability of Secrets.

40



Publicly Verifiable Secret Sharing (PVSS) [Sch99]

Setup ...

Distribution • Dist(pp, pkD, skD, {pki : i ∈ [n]}, S) performed by the dealer,
and where S ∈ G is a secret, outputs encrypted shares
Ci : i ∈ [n] and a proof PfSh of sharing correctness.

Verification • Verify(pp, pkD, {(pki, Ci) : i ∈ [n]}, PfSh) performed by the
public verifier outputs 0/1 (as a verdict on whether the sharing
is valid)

Reconstruction • DecShare(pp, pkD, pki, ski, Ci), performed by a share receiver,
outputs decrypted share Ai and proof PfDec i of correct
decryption.

• VerifyDec(pp, pkD, Ci, Ai, PfDec i) outputs 0/1 (as a verdict on
whether Ai is a valid decryption of Ci)

• Rec(pp, {Ai : i ∈ T }) for some T ⊆ [n] of size t + 1 outputs a
secret S.

Our constructions satisfy Correctness, Verifiability and Indistinguishability of Secrets.

40



Publicly Verifiable Secret Sharing (PVSS) [Sch99]

Setup ...

Distribution • Dist(pp, pkD, skD, {pki : i ∈ [n]}, S) performed by the dealer,
and where S ∈ G is a secret, outputs encrypted shares
Ci : i ∈ [n] and a proof PfSh of sharing correctness.

Verification • Verify(pp, pkD, {(pki, Ci) : i ∈ [n]}, PfSh) performed by the
public verifier outputs 0/1 (as a verdict on whether the sharing
is valid)

Reconstruction • DecShare(pp, pkD, pki, ski, Ci), performed by a share receiver,
outputs decrypted share Ai and proof PfDec i of correct
decryption.

• VerifyDec(pp, pkD, Ci, Ai, PfDec i) outputs 0/1 (as a verdict on
whether Ai is a valid decryption of Ci)

• Rec(pp, {Ai : i ∈ T }) for some T ⊆ [n] of size t + 1 outputs a
secret S.

Our constructions satisfy Correctness, Verifiability and Indistinguishability of Secrets.

40



Publicly Verifiable Secret Sharing (PVSS) [Sch99]

Setup ...

Distribution • Dist(pp, pkD, skD, {pki : i ∈ [n]}, S) performed by the dealer,
and where S ∈ G is a secret, outputs encrypted shares
Ci : i ∈ [n] and a proof PfSh of sharing correctness.

Verification • Verify(pp, pkD, {(pki, Ci) : i ∈ [n]}, PfSh) performed by the
public verifier outputs 0/1 (as a verdict on whether the sharing
is valid)

Reconstruction • DecShare(pp, pkD, pki, ski, Ci), performed by a share receiver,
outputs decrypted share Ai and proof PfDec i of correct
decryption.

• VerifyDec(pp, pkD, Ci, Ai, PfDec i) outputs 0/1 (as a verdict on
whether Ai is a valid decryption of Ci)

• Rec(pp, {Ai : i ∈ T }) for some T ⊆ [n] of size t + 1 outputs a
secret S.

Our constructions satisfy Correctness, Verifiability and Indistinguishability of Secrets.
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PVSS Constructions

We present two constructions of PVSS:

• HE-PVSS:

• Generic PVSS from a Zp-Linearly Homomorphic Encryption (LHE) scheme.

• Plaintext, randomness, ciphertext each have a Zp-vector space structure
(e.g. groups of order p).

• E.Encpk(m1; ρ1) �C E.Encpk(m2; ρ2) = E.Encpk(m1 �P m2; ρ1 �R ρ2)

• Allows for simple ”Schnorr-like” PoK of plaintext.

• And simple proof of correct Zp-Linear decryption (e.g. ElGamal)

• DH-PVSS:

• We present the first PVSS with constant size overhead.

• The dealer has an initial key-pair (pkD, skD) to enable the ”SCRAPE check”.

• Secret S = s · G is in group G = 〈G〉 of order p, where DDH is hard.

• Dealer publishes:
• n encrypted shares: each 1 element in G.
• Correctness proof: 2 Zp elements.
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Resharing and Reconstruction

Resharing:
1. Transfer S from Cr to Cr+1 where |Ck| = nk with threshold tk .

2. Each party Rr,i in committee Cr has Ar,i as share with public encryption

Cr,i = E.Encpkr,i (Ar,i)

3. Let Ai→j be share of Ar,i that will be sent from Rr,i to Rr+1,j encrypted as

Ci→j = E.Encpkr+1,j (Ai→j)

4. Rr,i that Ci→j are encryptions of a correct sharing whose secret is plaintext of Cr,i.

5. When a subset of tr + 1 parties have correctly reshared, each Rr+1,j sets

Ar+1,j =
∑
`∈Lr

λ`,LrA`→j Cr+1,j =
∑
`∈Lr

λ`,LrC`→j

.
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Resharing and Reconstruction

Reconstruction:

• Number of parties n1, . . .nlast and thresholds t1, . . . , tlast may differ from
round to round.

• Assuming proof of correct resharing, this implies proofs of correct
reconstruction if (nlast = 1, tlast = 0).

• Applications include:
• ”Keeping secrets on a blockchain” [BGG+20].
• EtF (far) future (carrying the TIBE key).
• Distributed Randomness Generation (Beacons).
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PVSS Constructions

HE-PVSS:

• Generic PVSS from a Zp-Linearly Homomorphic Encryption (LHE) scheme.

• Plaintext, randomness, ciphertext each have a Zp-vector space structure (e.g. groups of
order p).

• E.Encpk(m1; ρ1) �C E.Encpk(m2; ρ2) = E.Encpk(m1 �P m2; ρ1 �R ρ2)

• Allows for simple ”Schnorr-like” PoK of plaintext.

• And simple proof of correct Zp-Linear decryption (e.g. ElGamal)

DH-PVSS:
• We present a DL-based PVSS. First one (as far as we know) with constant size overhead.

• The dealer has an initial key-pair (pkD, skD) to enable the ”SCRAPE check”.

• Secret S = s · G is in group G = 〈G〉 of order p, where DDH is hard.

• Dealer publishes:

• n encrypted shares: each 1 element in G.
• Correctness proof: 2 Zp elements.
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DH-PVSS - Ideas 1

• Previously [CD20]: DL-based PVSS share-receivers have key pairs
(ski, PKi = ski · G).

• New: Dealer will also have a key pair (skD, PKD = skD · G).

• Shamir shares of S = s · G (dealer does not need to know s)

(Ai)i∈[n] ← GShamir.Share(ppSh, S)

• Ai encrypted as Ci = Ai + skD · PKi (skD · PKi is shared DH key).

Algorithm 6 GShamir.Share(pp, S)
1: Input: S ∈ G
2: m(X) $←− {m(X) ∈ Zp[X]≤t : m(α0) = 0}
3: Ai = S+m(αi) · G, i ∈ [n]
4: return (A1, . . . , An)
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DH-PVSS - Ideas 2

”SCRAPE Test” (Cascudo, David - ACNS17 [CD17]):

Theorem (SCRAPE dual-code test)

Let 1 ≤ t < n be integers. Let p be a prime number with p ≥ n. Let
α1, . . . , αn be pairwise different points in Zp. Define the coefficients
vi =

∏
j∈[n]\{i}(αi − αj)

−1. Let

C = {(m(α1), . . . ,m(αn)) : m(X) ∈ Zp[X]≤t}.

Then, for every vector (σ1, . . . , σn) in Znp:

(σ1, . . . , σn) ∈ C ⇔
n∑
i=1

vi ·m∗(αi) · σi = 0, ∀m∗ ∈ Zp[X]≤n−t−1.
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DH-PVSS - Ideas 2

”SCRAPE Test” (Cascudo, David - ACNS17 [CD17]):

• C = {(m(1), . . . ,m(n)) : deg(m) ≤ t} is a linear (Reed-Solomon) code
space.

• It has a dual code space:
D = {(m∗(1), . . . ,m∗(n)) : deg(m∗) ≤ n− t − 1}.

• Let a = (a1, . . . , an) in (Zp)n. Sample d = (d1, . . . ,dn) from D
• If a ∈ C, then

∑n
i=1 vi · di · ai = 0.

• If a /∈ C, then
∑n

i=1 vi · di · ai = 0, with probability 1/p.

Extends to group G = 〈G〉 where Ai = ai · G:

• Given (A1, . . . , An) in Gn. Sample d = (d1, . . . ,dn) from D.
n∑
i=1

vi · di · Ai
?
= O,
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Layered MPC [DDG+23]



Layered MPC

An (n, t,d)-layered protocol has the following properties:

Parties. N = n(d+ 1) parties partitioned into d+ 1 layers Li,
0 ≤ i ≤ d, where |Li| = n.

Interaction. d synchronous rounds where parties in Li−1 may send
messages to parties in Li over secure channels and
broadcast.
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Layered MPC

Functionalities. We consider functionalities f that take inputs from input
clients and deliver outputs to output clients.

Adversaries. We consider active, rushing, adaptive adversaries who may
corrupt any number of input/output clients, and t parties in
layers Li, 0 < i < d.
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Layered MPC

A note on Layered Broadcast

• The model of layered MPC assumes layer-to-layer broadcast.
• Deterministic Broadcast is impossible in the layered setting.
• Derived from the result of [Gar94] on reaching agreement in the
mobile setting.

Lemma 2
Deterministic Broadcast is possible iff t = 0.
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Future Messaging

Future Messaging functionality fFM

Public parameters: Sender S ∈ L0, receiver R ∈ Ld for d > 0 and
message domain M.

Secret inputs: S has input m ∈ M.

fFM receives m from S, and delivers m to R.

S

L0 L1 L2 L3

R

L4

Figure 1: ΠFM from S of m to R 52



Future Messaging

ΠFM from L0 to L1:
Use the secure point-to-point
channels from layer to the next layer.

L0 L1

ΠFM from L0 to L2:
1. S does Sh(m) = (s1, . . . , sn) and
sends sj to P1j .

2. P1j forwards sj to R and R obtains
m̂ = Rec(ŝ1, . . . , ŝn)

L0 L1 L2

(Equivalent to perfect malicious
1-way SMT [DDWY93])
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Future Messaging

L1 L2 L3 L4 L5 L6

ΠFM from S of m to R

ΠFM (S→ R)
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Future Messaging

L1 L2 L3 L4 L5 L6

ΠFM from S of m to R
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Future Messaging (and Rushing)

Dishonest Sender and problems with rushing

Parallel Invocations f nFM:
• When invoking multiple fFM in
parallel, the adversary can
cause a correlation attack.

• Model the parallel
functionality as
corruption-aware.

L0 L1

Non-committing Primitive:
• The adversary can change the
message m to a message of
its choosing m′ in fFM until the
last round.

• Where YOSO assumes ideal
committing communication to
future rounds.

S

L0 L1 L2 L3

R

L4

S NOT committed to m
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Future Broadcast

(Conditional) Future Broadcast

• Future Broadcast:
Invoke fFM where parties in Ld−1 are instructed to broadcast their shares instead
of sending to a recipient R.

• Conditional Disclosure:
Conditioned on some event E, honest parties in Ld−1 reveal their shares.

S

L0 L1 L2 L3 L4

Figure 2: Future Broadcast from S of m to L4 56



Future Messaging

Summary of Future Messaging:

Complexity Assuming a linear secret sharing scheme, ΠFM is a recursive
protocol realizing fFM with communication complexity
O(ndlog de log |M|).

Security Honest sender reduces to an instance of SMT Dishonest
sender is challenging with rushing.
Especially, when composing protocols.

Extension Future Messaging can be extended to (Conditional) Future
Broadcast.
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Towards Layered MPC



Layered CNF-VSS Protocol



Design Approach

CNF-VSS of [GIKR01]

Weak Future Multicast Πweak-FMcast

Future Multicast ΠFMcast

Verifiable Secret Sharing ΠVSS
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Techniques from [GIKR01]

4-round perfect CNF VSS
D (dealer) holds a secret s ∈ F and
obtains ShCNF(s) = (s1, . . . , sn).

1. D sends sj = (rT)T3j to Pj.

2. Each pair (Pj, Pj′) exchange share
rT (if j, j′ ∈ T).

3. If disagreement, involved parties
broadcast “complaint (rT )”.

4. D then broadcasts “resolve (rT )”,
if any complaints received from
Pj or Pj′ .

P3

D

P1

P4

P2
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Techniques from [GIKR01]

Challenges with layered [GIKR01]

• Dealer speaks more than once (round 1 and round 4).

Solution:
Emulate the dealer using Conditional Future Broadcast.

• Pj and Pj′ exchange additive shares.

Solution:
Invoke a Distributed Equality Check with Πadd for each pair (j, j′).
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Future Multicast

Future Multicast functionality fFMcast

Public parameters: Sender S ∈ L0, receiving set of parties
R ⊆ Ld,d ≥ 5, message domain M.

Secret inputs: S has input m ∈ M.

fFMcast receives m from S, and delivers m to all parties in R.

S

L0 L1 L2 L3 L4 L5

R

Figure 3: ΠFMcast from S ∈ L0 of m to R ⊆ L5 61



Future Multicast

Sketch of ΠFMcast

1. S samples additive shares {rT}T∈T of m.

2. S sends each rT to R ⊆ L5 using Πweak-FMcast.
Using a different set of intermediaries UT ⊂ L1 where |UT | = n− t.

3. Parties in R ⊆ L5 do m̂ =
∑

T∈T r̂T .

S

L0 L1 L2 L3 L4 L5

R
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Weak Future Multicast

Πweak-FMcast of r = rT from S ∈ L0 to R using UT as intermediaries.

L1 L2 L3 L4 L5
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Layered VSS

An (n, t, 5)-layered protocol ΠVSS realizing fVSS where t < n/3.

From Πweak-FMcast to ΠFMcast:

• Each additive share rT is transferred
to R using UT .

• Since at least one set (UT ) is
comprised of only honest parties the
message m =

∑
T∈T rT remains

secure if S and R are honest.

From ΠFMcast to ΠVSS:

• S samples {rT}T∈T as additive secret
sharing of secret s.

• For each T ∈ T , execute ΠFMcast with
S as sender with input rT and
{P5i : i ∈ T} as receivers.

s

L0 L1 L2 L3 L4

〈s〉

L5

Figure 4: ΠVSS from S ∈ L0 of m to L5
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CNF-based Layered MPC [GIKR01, Mau06]

Theorem 1: CNF-Based Layered MPC
Let f be an n-party functionality computed by a layered arithmetic
circuit C over a finite ring, with D layers and M gates. Then, for any
t < n/3, there is an (n, t,O(D))-layered MPC protocol for f . The
communication consists of 2O(n) ·M ring elements.

Corollary 1: Secure Maximally Proactive MPC
Let f be an n-party functionality computed by a layered arithmetic
circuit C over a finite ring, with D layers. Then, for t < n/3, there is a
maximally proactive MPC protocol computing f in r = O(D) rounds.

• May be concretely efficient for small n.

• Use techniques from [CDI05] to amortize the communication overhead by
sending k-bit seeds and let the receivers generate most shares locally.

• This technique makes use of black-box access to PRG (computational security).

65



CNF-based Layered MPC [GIKR01, Mau06]

Theorem 1: CNF-Based Layered MPC
Let f be an n-party functionality computed by a layered arithmetic
circuit C over a finite ring, with D layers and M gates. Then, for any
t < n/3, there is an (n, t,O(D))-layered MPC protocol for f . The
communication consists of 2O(n) ·M ring elements.

Corollary 1: Secure Maximally Proactive MPC
Let f be an n-party functionality computed by a layered arithmetic
circuit C over a finite ring, with D layers. Then, for t < n/3, there is a
maximally proactive MPC protocol computing f in r = O(D) rounds.

• May be concretely efficient for small n.

• Use techniques from [CDI05] to amortize the communication overhead by
sending k-bit seeds and let the receivers generate most shares locally.

• This technique makes use of black-box access to PRG (computational security).

65



CNF-based Layered MPC [GIKR01, Mau06]

Theorem 1: CNF-Based Layered MPC
Let f be an n-party functionality computed by a layered arithmetic
circuit C over a finite ring, with D layers and M gates. Then, for any
t < n/3, there is an (n, t,O(D))-layered MPC protocol for f . The
communication consists of 2O(n) ·M ring elements.

Corollary 1: Secure Maximally Proactive MPC
Let f be an n-party functionality computed by a layered arithmetic
circuit C over a finite ring, with D layers. Then, for t < n/3, there is a
maximally proactive MPC protocol computing f in r = O(D) rounds.

• May be concretely efficient for small n.

• Use techniques from [CDI05] to amortize the communication overhead by
sending k-bit seeds and let the receivers generate most shares locally.

• This technique makes use of black-box access to PRG (computational security).

65



Efficient Layered MPC [BGW88]

Theorem 2: Efficient Layered MPC
Let f be an n-party functionality computed by a layered arithmetic
circuit C over a finite field, with D layers and M gates. Then, for any
t < n/3, there is an (n, t,O(D))-layered MPC protocol for f . The
communication consists of O(n9) ·M field elements.

Corollary 2: (Efficient) Secure Maximally Proactive MPC
Let f be an n-party functionality computed by a layered arithmetic
circuit C over a finite field, with D layers. Then, for t < n/3, there is
an efficient maximally proactive MPC protocol computing f in
r = O(D) rounds.

• Extending the techniques for Distributed Equality Check and Conditional Future
Broadcast to the [BGW88]-setting.

• Use techniques from [CDI05] to amortize the c
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Results

f Reference Level Security Comm. Threshold

FM This work perfect full poly(n) t < n/3

VSS
[BGG+20] comp. full poly(n) t < n/4∗

This work perfect full 2O(n) t < n/3
This work (Sec. 5) perfect full poly(n) t < n/3

MPC

[GHK+21] (YOSO) statistical full +setup† poly(n) t < n/2∗

[CGG+21] (Fluid) statistical abort poly(n) t < n/2
[OY91] perfect full poly(n) t < n/d
This work perfect full 2O(n) t < n/3
This work (Sec. 5) perfect full poly(n) t < n/3
This work (Sec. 6) comp. full poly(n) t < n/2

Table 1: Protocols realizing primitives in the most extreme proactive settings.
(∗protocol security relies on the adversary only doing probabilistic corruption,
†assumes access to ideal target-anonymous channels for future messaging)
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Conclusion

Layer 4 (Layered MPC):
• MPC w/ restricted interaction.

• Prove feasibility of general
perfect MPC with n/3.

• Show implications to classic
proactive MPC and newer YOSO.

Layer 3 (YOLO-YOSO):
• Mixnet-based EtF (near) using
standard PKE

• Propose a generic HE-PVSS and a
extremely efficient DH-PVSS.

• Both HE-PVSS and DH-PVSS
extendable to proactive
resharing (YOSO).

Layer 2 (Encryption to the Future):
• Formalize and define Encryption
to the Future

• Construct EtF (near) using only
OT+GC (w/o auxiliary commitees)

• Construct EtF (far) using TIBE w/
comm. independent of M.
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Thank You!

Link to Eprints:
https://ia.cr/2021/1423
https://ia.cr/2022/242
https://ia.cr/2023/330

Link to Thesis:
https://akonring.github.io/thesis.pdf
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